Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.411
Filtrar
1.
J Virol ; 97(11): e0117123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37888980

RESUMO

IMPORTANCE: CD4-mimetic compounds (CD4mcs) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. CD4mcs target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor, CD4, and is highly conserved among HIV-1 strains. Nonetheless, naturally occurring HIV-1 strains exhibit a wide range of sensitivities to CD4mcs. Our study identifies changes distant from the binding pocket that can influence the susceptibility of natural HIV-1 strains to the antiviral effects of multiple CD4mcs. We relate the antiviral potency of the CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate entry-related changes in Env conformation prematurely. These findings will guide efforts to improve the potency and breadth of CD4mcs against natural HIV-1 variants.


Assuntos
Fármacos Anti-HIV , Antígenos CD4 , Proteína gp120 do Envelope de HIV , HIV-1 , Mimetismo Molecular , Receptores de HIV , Humanos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Sítios de Ligação/efeitos dos fármacos , Antígenos CD4/química , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/química , HIV-1/classificação , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores de HIV/metabolismo , Internalização do Vírus/efeitos dos fármacos
2.
Emerg Microbes Infect ; 12(1): e2169196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36647730

RESUMO

HIV-1 infection is mediated by a viral envelope subsequently binding to CD4 receptor and two main coreceptors, CCR5 (R5) for primary infection and CXCR4 (X4) in chronic infection. Switching from R5 to X4 tropism in HIV-1 infection is associated with increased viral pathogenesis and disease progression. The coreceptor switching is mainly due to variations in the V3 loop, while the mechanism needs to be further elucidated. We systematically studied the determinant for HIV-1 coreceptor switching by substitution of the genes from one R5 and one X4 pseudoviruses. The study results in successfully constructing two panels of chimeric viruses of R5 to X4 forward and X4 to R5 reverse switching. The determinants for tropism switching are the combined substitution of the V3 loop and C4 region of the HIV-1 envelope. The possible mechanism of the tropism switching includes two components, the V3 loop to enable the viral envelope binding to the newly switched coreceptor and the C4 region, to compensate for the loss of fitness caused by deleterious V3 loop mutations to maintain the overall viral viability. The combined C4 and V3 substitution showed at least an eightfold increase in replication activity compared with the pseudovirus with only V3 loop substitution. The site-directed mutations of N425R and S440-I442 with charged amino acids could especially increase viral activity. This study could facilitate HIV-1 phenotype surveillance and select right entry inhibitor, CCR5 or CXCR4 antagonists, for antiviral therapy.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Sequência de Aminoácidos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores de HIV/genética , Receptores de HIV/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Mutação , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo
3.
J Virol ; 96(17): e0095722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975998

RESUMO

HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.


Assuntos
Sistema Nervoso Central , Infecções por HIV , HIV-1 , Inflamação , Macrófagos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Interferon-alfa/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/virologia , Glicoproteínas de Membrana/metabolismo , Microglia/citologia , Microglia/virologia , RNA-Seq , Receptores de HIV/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
4.
J Virol ; 96(17): e0063622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35980207

RESUMO

Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.


Assuntos
Antígenos CD4 , Farmacorresistência Viral , Glicoproteínas , Guanidinas , Indenos , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana , Sítios de Ligação/genética , Antígenos CD4/química , Antígenos CD4/metabolismo , Farmacorresistência Viral/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Guanidinas/química , Guanidinas/farmacologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/química , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos , Indenos/química , Indenos/farmacologia , Conformação Proteica/efeitos dos fármacos , Receptores de HIV/química , Receptores de HIV/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
5.
Sci Rep ; 12(1): 11425, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794176

RESUMO

CCR5 is the main HIV co-receptor. We aimed to (1) compare CCR5 expression on immune cells between people living with HIV (PLHIV) using combination antiretroviral therapy (cART) and HIV-uninfected controls, (2) relate CCR5 expression to viral reservoir size and (3) assess determinants of CCR5 expression. This cross-sectional study included 209 PLHIV and 323 controls. Percentages of CCR5+ cells (%) and CCR5 mean fluorescence intensity assessed by flow cytometry in monocytes and lymphocyte subsets were correlated to host factors, HIV-1 cell-associated (CA)-RNA and CA-DNA, plasma inflammation markers and metabolites. Metabolic pathways were identified. PLHIV displayed higher percentages of CCR5+ monocytes and several CD8+ T cell subsets, but lower percentages of CCR5+ naive CD4+ T cells and regulatory T cells (Tregs). HIV-1 CA-DNA and CA-RNA correlated positively with percentages of CCR5+ lymphocytes. Metabolome analysis revealed three pathways involved in energy metabolism associated with percentage of CCR5+ CD8+ T cells in PLHIV. Our results indicate that CCR5 is differently expressed on various circulating immune cells in PLHIV. Hence, cell-trafficking of CD8+ T cells and Tregs may be altered in PLHIV. Associations between energy pathways and percentage of CCR5+ CD8+ T cells in PLHIV suggest higher energy demand of these cells in PLHIV.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , HIV-1 , Receptores CCR5 , Linfócitos T Reguladores , Linfócitos T CD8-Positivos/imunologia , Estudos Transversais , Infecções por HIV/sangue , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , RNA/metabolismo , Receptores CCR5/imunologia , Receptores de HIV , Linfócitos T Reguladores/imunologia
6.
Viruses ; 14(4)2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458559

RESUMO

The achievement of an HIV cure is dependent on the eradication or permanent silencing of HIV-latent viral reservoirs, including the understudied central nervous system (CNS) reservoir. This requires a deep understanding of the molecular mechanisms of HIV's entry into the CNS, latency establishment, persistence, and reversal. Therefore, representative CNS culture models that reflect the intercellular dynamics and pathophysiology of the human brain are urgently needed in order to study the CNS viral reservoir and HIV-induced neuropathogenesis. In this study, we characterized a human cerebral organoid model in which microglia grow intrinsically as a CNS culture model to study HIV infection in the CNS. We demonstrated that both cerebral organoids and isolated organoid-derived microglia (oMG), infected with replication-competent HIVbal reporter viruses, support productive HIV infection via the CCR5 co-receptor. Productive HIV infection was only observed in microglial cells. Fluorescence analysis revealed microglia as the only HIV target cell. Susceptibility to HIV infection was dependent on the co-expression of microglia-specific markers and the CD4 and CCR5 HIV receptors. Altogether, this model will be a valuable tool within the HIV research community to study HIV-CNS interactions, the underlying mechanisms of HIV-associated neurological disorders (HAND), and the efficacy of new therapeutic and curative strategies on the CNS viral reservoir.


Assuntos
Nefropatia Associada a AIDS , Infecções por HIV , HIV-1 , Microglia , Nefropatia Associada a AIDS/patologia , HIV-1/fisiologia , Humanos , Organoides/virologia , Receptores de HIV
7.
Emerg Microbes Infect ; 11(1): 30-49, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34821542

RESUMO

Emerging studies indicate that infusion of HIV-resistant cells could be an effective strategy to achieve a sterilizing or functional cure. We recently reported that glycosylphosphatidylinositol (GPI)-anchored nanobody or a fusion inhibitory peptide can render modified cells resistant to HIV-1 infection. In this study, we comprehensively characterized a panel of newly isolated HIV-1-neutralizing antibodies as GPI-anchored inhibitors. Fusion genes encoding the single-chain variable fragment (scFv) of 3BNC117, N6, PGT126, PGT128, 10E8, or 35O22 were constructed with a self-inactivating lentiviral vector, and they were efficiently expressed in the lipid raft sites of target cell membrane without affecting the expression of HIV-1 receptors (CD4, CCR5 and CXCR4). Significantly, transduced cells exhibited various degrees of resistance to cell-free HIV-1 infection and cell-associated HIV-1 transmission, as well as viral Env-mediated cell-cell fusion, with the cells modified by GPI-10E8 showing the most potent and broad anti-HIV activity. In mechanism, GPI-10E8 also interfered with the processing of viral Env in transduced cells and attenuated the infectivity of progeny viruses. By genetically linking 10E8 with a fusion inhibitor peptide, we subsequently designed a group of eight bifunctional constructs as cell membrane-based inhibitors, designated CMI01∼CMI08, which rendered cells completely resistant to HIV-1, HIV-2, and simian immunodeficiency virus (SIV). In human CD4+ T cells, GPI-10E8 and its bifunctional derivatives blocked both CCR5- and CXCR4-tropic HIV-1 isolates efficiently, and the modified cells displayed robust survival selection under HIV-1 infection. Therefore, our studies provide new strategies for generating HIV-resistant cells, which can be used alone or with other gene therapy approaches.


Assuntos
Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Infecções por HIV/terapia , HIV-1/fisiologia , Fragmentos de Peptídeos/farmacologia , Anticorpos de Cadeia Única/imunologia , Fármacos Anti-HIV/farmacologia , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos T CD4-Positivos/virologia , Fusão Celular , Linhagem Celular , Terapia Genética , Glicosilfosfatidilinositóis , Anticorpos Anti-HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-2/imunologia , HIV-2/fisiologia , Humanos , Microdomínios da Membrana , Fragmentos de Peptídeos/genética , Receptores de HIV/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Anticorpos de Cadeia Única/genética , Transgenes , Tropismo Viral
8.
Retrovirology ; 18(1): 24, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429135

RESUMO

The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1/patogenicidade , Doenças Neuroinflamatórias/virologia , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Receptores de HIV/metabolismo , Transdução de Sinais , Animais , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/uso terapêutico , Ensaios Clínicos como Assunto , Infecções por HIV/complicações , HIV-1/efeitos dos fármacos , Humanos , Camundongos , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/fisiopatologia , Receptores CCR5/imunologia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Receptores de HIV/imunologia
9.
Viruses ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478139

RESUMO

The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For one of the first times, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host CD4+ T cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function.


Assuntos
Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , HIV-1/fisiologia , Imagem Individual de Molécula/métodos , Linfócitos T/metabolismo , Linfócitos T/virologia , Ligação Viral , Algoritmos , Anticorpos Monoclonais , Linhagem Celular , Interpretação Estatística de Dados , Proteína gp120 do Envelope de HIV/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Processamento de Imagem Assistida por Computador , Ligação Proteica , Receptores CCR5/metabolismo , Receptores de HIV/metabolismo
10.
Retrovirology ; 17(1): 24, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762760

RESUMO

BACKGROUND: HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2 months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. RESULTS: A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naïve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. CONCLUSIONS: CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3 years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naïve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Subpopulações de Linfócitos T/imunologia , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Adulto , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Feminino , Variação Genética , Infecções por HIV/imunologia , HIV-1/classificação , HIV-1/genética , Humanos , Memória Imunológica , Estudos Longitudinais , Filogenia , Receptores de HIV/metabolismo , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
11.
BMC Biol ; 18(1): 91, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32693837

RESUMO

BACKGROUND: The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS: N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION: Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.


Assuntos
HIV-1/fisiologia , Receptores de HIV/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Humanos , Receptores de HIV/metabolismo
12.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295903

RESUMO

Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.


Assuntos
Infecções por HIV/imunologia , HIV-1/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores de HIV/imunologia , Adulto , Idoso , Sequência de Aminoácidos , Contagem de Linfócito CD4 , Coinfecção , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Ligação Proteica , RNA Viral/genética , RNA Viral/imunologia , Receptores CCR5/imunologia , Receptores CXCR4/imunologia , Receptores de HIV/genética , Tropismo Viral/genética , Tropismo Viral/imunologia , Ligação Viral , Internalização do Vírus
13.
AIDS ; 34(8): 1141-1149, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32287059

RESUMO

OBJECTIVE: To assess the in-vitro CCR5---tropic and CXCR4---tropic HIV---1 infectivity of immune cells, particularly macrophages, derived from CCR5 gene---edited induced pluripotent stem cells (iPSCs) obtained from the peripheral blood mononuclear cells (PBMC) of HIV---infected patients on antiretroviral therapy (ART). DESIGN: PBMC were obtained from six patients who had been HIV---infected for over 20 years and were on ART for 1---12 years prior to this study. METHODS: The PBMC were derived into iPSCs and genetically edited with TALENs or CRISPR---cas9 endonucleases combined with PiggyBac technology to introduce the naturally occurring 32---bp deletion to the CCR5 gene. These iPSCs were differentiated into macrophages, and subsequently challenged with CCR5---tropic or CCR5/CXCR4 dual--- tropic HIV---1 strains. iPSC derivation, gene editing and immune cell differentiation were done in feeder---free, xeno---free in-vitro conditions. RESULTS: Multiple unedited (wild---type) and CCR5 gene---edited (mutant) iPSCs were derived from patients' PBMC. When differentiated into immune cells and HIV---1 challenged, mutant iPSC lines were resistant to CCR5---tropic and to some extent to CCR5/CXCR4 dual---tropic HIV---1 infection when compared to wild---type iPSC lines. CONCLUSION: Our study demonstrates that iPSC---derived, gene---edited immune cells are resistant to distinct HIV---1 strains. These findings have important implications for both in-vitro stem cell development and therapeutic approaches to cure HIV infection.


Assuntos
Infecções por HIV/terapia , HIV-1/genética , Células-Tronco Pluripotentes Induzidas , Leucócitos Mononucleares , Receptores de HIV/fisiologia , Proteína 9 Associada à CRISPR , HIV-1/fisiologia , Humanos , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores CXCR4/fisiologia
14.
AIDS Res Ther ; 17(1): 5, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033571

RESUMO

BACKGROUND: Entry inhibitors, such as Maraviroc, hold promise as components of HIV treatment and/or pre-exposure prophylaxis in Africa. Maraviroc inhibits the interaction between HIV Envelope gp120 V3-loop and CCR5 coreceptor. HIV-1 subtype C (HIV-1-C) is predominant in Southern Africa and preferably uses CCR5 co-receptor. Therefore, a significant proportion of HIV-1-C CXCR4 utilizing viruses (X4) may compromise the effectiveness of Maraviroc. This analysis examined coreceptor preferences in early and chronic HIV-1-C infections across Africa. METHODS: African HIV-1-C Envelope gp120 V3-loop sequences sampled from 1988 to 2014 were retrieved from Los Alamos HIV Sequence Database. Sequences from early infections (< 186 days post infection) and chronic infections (> 186 days post infection) were analysed for predicted co-receptor preferences using Geno2Pheno [Coreceptor] 10% FPR, Phenoseq-C, and PSSMsinsi web tools. V3-loop diversity was determined, and viral subtype was confirmed by phylogenetic analysis. National treatment guidelines across Africa were reviewed for Maraviroc recommendation. RESULTS: Sequences from early (n = 6316) and chronic (n = 7338) HIV-1-C infected individuals from 10 and 15 African countries respectively were available for analyses. Overall, 518/6316 (8.2%; 95% CI 0.7-9.3) of early sequences were X4, with Ethiopia and Malawi having more than 10% each. For chronic infections, 8.3% (95% CI 2.4-16.2) sequences were X4 viruses, with Ethiopia, Tanzania, and Zimbabwe having more than 10% each. For sequences from early chronic infections (< 1 year post infection), the prevalence of X4 viruses was 8.5% (95% CI 2.6-11.2). In late chronic infections (≥ 5 years post infection), X4 viruses were observed in 36% (95% CI - 16.3 to 49.9), with two countries having relatively high X4 viruses: South Africa (43%) and Malawi (24%). The V3-loop amino acid sequence were more variable in X4 viruses in chronic infections compared to acute infections, with South Africa, Ethiopia and Zimbabwe showing the highest levels of V3-loop diversity. All sequences were phylogenetically confirmed as HIV-1-C and clustered according to their co-receptor tropism. In Africa, Maraviroc is registered only in South Africa and Uganda. CONCLUSIONS: Our analyses illustrate that X4 viruses are present in significantly similar proportions in early and early chronic HIV-1 subtype C infected individuals across Africa. In contrast, in late chronic infections, X4 viruses increase 3-5 folds. We can draw two inferences from our observations: (1) to enhance the utility of Maraviroc in chronic HIV subtype C infections in Africa, prior virus co-receptor determination is needed; (2) on the flip side, research on the efficacy of CXCR4 antagonists for HIV-1-C infections is encouraged. Currently, the use of Maraviroc is very limited in Africa.


Assuntos
Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , HIV-1/classificação , Tropismo Viral/genética , Farmacorresistência Viral Múltipla/genética , Genótipo , Infecções por HIV/transmissão , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Maraviroc/uso terapêutico , Filogenia , Receptores CXCR4 , Receptores de HIV , Análise de Sequência de DNA , África do Sul/epidemiologia
15.
Curr HIV Res ; 17(5): 306-323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31652113

RESUMO

Acquired Immunodeficiency Syndrome (AIDS), caused by the Human Immunodeficiency Virus (HIV), is a life-threatening disorder that persists worldwide as a severe health problem. Since it was linked with the HIV attachment process, the Chemokine receptor, CCR5, has been at the development leading edge of several gene-based therapies. Given the shortcomings of the current antiretroviral treatment procedure and the non-availability of a licensed vaccine, the aptitude to modify complex genomes with Designer Nucleases has had a noteworthy impact on biotechnology. Over the last years, ZFN, TALEN and CRISPR/Cas9 gene-editing technology have appeared as a promising solution that mimics the naturally occurring CCR5/Δ32 mutation and permanently guarantees the absence of CCR5-expression on the surface of HIV target-cells, leading to a continuous resistance to the virus entry and, ultimately, proving that cellular immunization from infection could be, in fact, a conceivable therapeutic approach to finally achieve the long-awaited functional cure of HIV.


Assuntos
Desoxirribonucleases/metabolismo , Edição de Genes/métodos , Terapia Genética/métodos , Infecções por HIV/terapia , Receptores CCR5/genética , Receptores de HIV/genética , Pesquisa Biomédica/tendências , Desoxirribonucleases/genética , Humanos , Deleção de Sequência
16.
Viruses ; 11(8)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412617

RESUMO

Despite recent progress in the development of novel potent HIV-1 entry/fusion inhibitors, there are currently no licensed antiviral drugs based on inhibiting the critical interactions of the HIV-1 envelope gp120 protein with cellular receptor CD4. In this connection, studies on the design of new small-molecule compounds able to block the gp120-CD4 binding are still of great value. In this work, in silico design of drug-like compounds containing the moieties that make the ligand active towards gp120 was performed within the concept of click chemistry. Complexes of the designed molecules bound to gp120 were then generated by molecular docking and optimized using semiempirical quantum chemical method PM7. Finally, the binding affinity analysis of these ligand/gp120 complexes was performed by molecular dynamic simulations and binding free energy calculations. As a result, five top-ranking compounds that mimic the key interactions of CD4 with gp120 and show the high binding affinity were identified as the most promising CD4-mimemic candidates. Taken together, the data obtained suggest that these compounds may serve as promising scaffolds for the development of novel, highly potent and broad anti-HIV-1 therapeutics.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Antígenos CD4/antagonistas & inibidores , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Receptores de HIV/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antígenos CD4/metabolismo , Simulação por Computador , Desenho de Fármacos , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de HIV/antagonistas & inibidores
17.
Curr Stem Cell Res Ther ; 14(7): 591-597, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31120000

RESUMO

Combination antiretroviral therapy (cART) has significantly reduced the mortality rate and morbidity, and has increased the life expectancy of the human immunodeficiency virus (HIV) infected patients. However, the current cART is incapable of eradicating viruses from the human body, and HIV remains one of the most notorious viruses mankind has ever faced. HIV-1 enters target cells through the binding of gp120 viral protein to a CD4 receptor and then to a coreceptor, C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4). Individuals homozygous for a 32-bp deletion in the CCR5 allele, CCR5Δ32, are almost completely resistant to HIV-1 acquisition. Moreover, several of natural CXCR4 mutants which have been identified can reduce HIV-1 entry without impairing either ligand binding or signaling. In order to get rid of indefinite treatment for HIV patients, there is a growing interest in creating an HIV-resistant immune system through the use of CCR5 and CXCR4-modified hematopoietic stem cells (HSCs). Proof of concept for this approach has been provided in the instance of "Berlin patient" transplanted with allogeneic stem cells from a donor with homozygosity for the CCR5Δ32 deletion. Here, we review the progress of coreceptor-based HSC gene therapy for HIV disease and present new strategies.


Assuntos
Terapia Genética/métodos , Infecções por HIV/terapia , HIV-1/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Receptores de Citocinas/genética , Receptores de HIV/genética , Terapia Combinada , Infecções por HIV/genética , Infecções por HIV/metabolismo , Humanos
18.
Nature ; 565(7739): 318-323, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542158

RESUMO

HIV-1 envelope glycoprotein (Env), which consists of trimeric (gp160)3 cleaved to (gp120 and gp41)3, interacts with the primary receptor CD4 and a coreceptor (such as chemokine receptor CCR5) to fuse viral and target-cell membranes. The gp120-coreceptor interaction has previously been proposed as the most crucial trigger for unleashing the fusogenic potential of gp41. Here we report a cryo-electron microscopy structure of a full-length gp120 in complex with soluble CD4 and unmodified human CCR5, at 3.9 Å resolution. The V3 loop of gp120 inserts into the chemokine-binding pocket formed by seven transmembrane helices of CCR5, and the N terminus of CCR5 contacts the CD4-induced bridging sheet of gp120. CCR5 induces no obvious allosteric changes in gp120 that can propagate to gp41; it does bring the Env trimer close to the target membrane. The N terminus of gp120, which is gripped by gp41 in the pre-fusion or CD4-bound Env, flips back in the CCR5-bound conformation and may irreversibly destabilize gp41 to initiate fusion. The coreceptor probably functions by stabilizing and anchoring the CD4-induced conformation of Env near the cell membrane. These results advance our understanding of HIV-1 entry into host cells and may guide the development of vaccines and therapeutic agents.


Assuntos
Antígenos CD4/química , Antígenos CD4/ultraestrutura , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/ultraestrutura , Receptores CCR5/química , Receptores CCR5/ultraestrutura , Receptores de HIV/química , Receptores de HIV/ultraestrutura , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Antígenos CD4/isolamento & purificação , Antígenos CD4/metabolismo , Linhagem Celular , Quimiocina CCL5/química , Quimiocina CCL5/metabolismo , Proteína gp120 do Envelope de HIV/isolamento & purificação , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/ultraestrutura , Humanos , Ligantes , Maraviroc/química , Maraviroc/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores CCR5/isolamento & purificação , Receptores CCR5/metabolismo , Receptores de HIV/antagonistas & inibidores , Receptores de HIV/metabolismo
19.
Proc Natl Acad Sci U S A ; 116(1): 239-244, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559208

RESUMO

HIV-1 evolved into various genetic subtypes and circulating recombinant forms (CRFs) in the global epidemic. The same subtype or CRF is usually considered to have similar phenotype. Being one of the world's major CRFs, CRF01_AE infection was reported to associate with higher prevalence of CXCR4 (X4) viruses and faster CD4 decline. However, the underlying mechanisms remain unclear. We identified eight phylogenetic clusters of CRF01_AE in China and hypothesized that they may have different phenotypes. In the National HIV Molecular Epidemiology Survey, we discovered that people infected by CRF01_AE cluster 4 had significantly lower CD4 counts (391 vs. 470, P < 0.0001) and higher prevalence of X4-using viruses (17.1% vs. 4.4%, P < 0.0001) compared with those infected by cluster 5. In an MSM cohort, X4-using viruses were only isolated from seroconvertors in cluster 4, which was associated with low a CD4 count within the first year of infection (141 vs. 440, P = 0.003). Using a coreceptor binding model, we identified unique V3 signatures in cluster 4 that favor CXCR4 use. We demonstrate that the HIV-1 phenotype and pathogenicity can be determined at the phylogenetic cluster level in the same subtype. Since its initial spread to humans from chimpanzees, estimated to be the first half of the 20th century, HIV-1 continues to undergo rapid evolution in larger and more diverse populations. The divergent phenotype evolution of two major CRF01_AE clusters highlights the importance of monitoring the genetic evolution and phenotypic shift of HIV-1 to provide early warning of the appearance of more pathogenic strains.


Assuntos
Contagem de Linfócito CD4 , HIV-1/genética , China/epidemiologia , Progressão da Doença , Estudos de Associação Genética , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Epidemiologia Molecular , Filogenia , Receptores de HIV/genética , Relação Estrutura-Atividade , Tropismo Viral/genética
20.
J Clin Virol ; 111: 12-18, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30594700

RESUMO

BACKGROUND: Assessment of human immunodeficiency virus type 1 (HIV-1) coreceptor usage is required prior to treatment with the CCR5 antagonist maraviroc to exclude the presence of CXCR4-using (X4) strains. Genotype-based interpretation systems are mostly designed on subtype B and have been reported to be less accurate for subtype A/CRF02_AG. OBJECTIVES: To evaluate the performance of the widely used Geno2Pheno[coreceptor] (G2P[c]) algorithm for prediction of coreceptor usage with subtype A/CRF02_AG vs. subtype B. STUDY DESIGN: Co-receptor tropism of 24 subtype A/CRF02_AG and 24 subtype B viruses was measured phenotypically by a homebrew single-cycle assay and genotypically by using G2P[c]. Samples with discrepant genotype-phenotype results were analyzed by next generation sequencing (NGS) and interpreted by the NGS Geno2Pheno algorithm (G2P[454]). RESULTS: At 10% false positive rate (FPR), the G2P[c]/phenotype discordance rate was 12.5% (n = 3) for subtype A/CRF02_AG and 8.3% (n = 2) for subtype B. Minority X4 species escaping detection by bulk sequencing but documented by NGS explained the two subtype B and possibly one subtype A/CRF02_AG discordant case. The other two subtype A/CRF02_AG miscalled by G2P[c] could be explained by X4 overcalling at borderline FPR and/or by algorithm failure. DISCUSSION: Our study did not demonstrate relevantly higher G2P[c] inaccuracy with subtype A/CRF02_AG with respect to subtype B. Genotype/phenotype discordances can be due to different reasons, including but not limited to, algorithm inaccuracy. Very large genotype/phenotype correlation panels are required to detect and explain the reason for any consistent difference in genotypic tropism prediction for subtype A/CRF02_AG vs. subtype B.


Assuntos
Algoritmos , HIV-1/genética , Receptores de HIV/genética , Tropismo Viral , Antagonistas dos Receptores CCR5/uso terapêutico , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Maraviroc/uso terapêutico , Fenótipo , Receptores de HIV/classificação , Software , Viremia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...